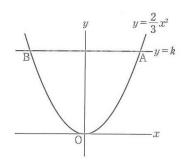
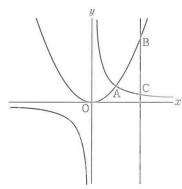

2. その他の問題


3 (1) $\alpha = \frac{2}{9}$ (2) y = 2x - 4


③ (1) 点Aのy座標は、 $y = \frac{6}{3} = 2$ よって、 $2 = a \times 3^2$ より、 $a = \frac{2}{9}$

[4] (1) $\alpha = \frac{1}{3}$ (2) $y = \frac{1}{6}x + 1$

6 (1) A(3, 6) (2) $k = \frac{3}{2}$

4 (1) 点Cのy座標は、 $y = \frac{2}{3} \times 2 = \frac{4}{3}$

よって, $\frac{4}{3}$ =a×2² より,a= $\frac{1}{3}$ (2) 求める直線は辺 AB の中点Mを通る。

A(-3, 3), B(-3, -2) より, 点 M の座標は, $\left(-3, \frac{3-2}{2}\right) = \left(-3, \frac{1}{2}\right)$

2 点 C,M を通る直線の式を y=px+q とする。 $C\left(2, \frac{4}{3}\right)$ を通るから, $\frac{4}{3}=2p+q$ …①

 $M\left(-3, \frac{1}{2}\right)$ を通るから、 $\frac{1}{2} = -3p + q$ …②

①、②を連立方程式として解いて、 $p=\frac{1}{6}$ 、q=1

6 (1) 点Aのy座標は6だから, x座標は,

$$6 = \frac{2}{3}x^2$$
 $x = \pm 3$ $x > 0$ だから, $x = 3$

(2) 辺ABとy軸との交点をCとすると、ΔOABが直角二等辺三角形のとき、ΔOCAも直角二等辺三角形で、OC=CAとなる。よって、点Aの座標はA(k, k)とおけるから、

$$k = \frac{2}{3}k^2$$
 $k(\frac{2}{3}k-1)=0$ $k=0, \frac{3}{2}$

k > 0 だから, $k = \frac{3}{2}$